Transforming growth factor-beta(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo.
نویسندگان
چکیده
Development of midbrain dopaminergic neurons is known to depend on inductive signals derived from the ventral midline, including Sonic hedgehog (Shh) as one of the identified molecules. Here we show that in addition to Shh, transforming growth factor (TGF)-beta is required for both induction and survival of ventrally located midbrain dopaminergic neurons. Like Shh, TGF-beta is expressed in early embryonic structures such as notochord and floor plate, as well as in the area where midbrain dopaminergic neurons are developing. Treatment of cells dissociated from the rat embryonic day (E) 12 midbrain floor with TGF-beta significantly increases the number of tyrosine hydroxylase (TH)-positive dopaminergic neurons within 24 hr. Neutralization of TGF-beta in vitro completely abolishes the induction of dopaminergic neurons. In the absence of TGF-beta, Shh cannot induce TH-positive neurons, and vice versa, neutralizing endogenous Shh abolishes the capacity of TGF-beta to induce dopaminergic neurons in vitro. Furthermore, neutralization of TGF-beta in vivo during chick E2-7 but not E4-7 resulted in a significant reduction in TH-positive neurons in the ventral midbrain floor but not in the locus coeruleus or diencephalon, which suggests that the TGF-beta is required for the induction of mesencephalic dopaminergic neurons with a critical time period at E2/E3. Furthermore, neutralization of TGF-beta between E6 and 10, a time period during maturation of mesencephalic dopaminergic neurons when no further inductive cues are required, also resulted in a significant loss of dopaminergic neurons, suggesting that TGF-beta is required for the promotion of survival of ventral midbrain dopaminergic neurons as well. Together, our results identify TGF-beta as an essential mediator for the induction and maintenance of midbrain dopaminergic neurons.
منابع مشابه
Laminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملTransforming growth factor beta cooperates with persephin for dopaminergic phenotype induction.
The aim of the present study was to investigate the putative cooperative effects of transforming growth factor beta (TGF-beta) and glial cell line-derived neurotrophic factor (GDNF) family ligands in the differentiation of midbrain progenitors toward a dopaminergic phenotype. Therefore, a mouse midbrain embryonic day (E) 12 neurospheres culture was used as an experimental model. We show that ne...
متن کاملComparison of Rat Primary Midbrain Neurons Cultured in DMEM/F12 and Neurobasal Mediums
Introduction: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several ...
متن کاملContext-dependent neuronal differentiation and germ layer induction of Smad4-/- and Cripto-/- embryonic stem cells.
Activation of transforming growth factor-beta (TGF-beta) receptors typically elicits mesodermal development, whereas inhibition of this pathway induces neural fates. In vitro differentiated mouse embryonic stem (ES) cells with deletion of the TGF-beta pathway-related factors Smad4 or Cripto exhibited increased numbers of neurons. Cripto-/- ES cells developed into neuroecto-/epidermal cell types...
متن کاملP-34: Effect of Including Growth Factors andAntioxidants in Maturation Medium Used forIn vitro Culture of Buffalo Oocytes RecoveredIn vivo
Background: This study examined the effect of including one of two growth factors (100 ng/ml IGF-1 or 20 ng/ ml EGF) in combination with one of two antioxidants (50 μM cysteamine or 50 μM beta-mercaptoethanol) in invitro maturation of buffalo oocytes, followed by fertilization and subsequent development of embryos. Materials and Methods: The oocytes were recovered by in vivo ovum pick-up techni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 12 شماره
صفحات -
تاریخ انتشار 2003